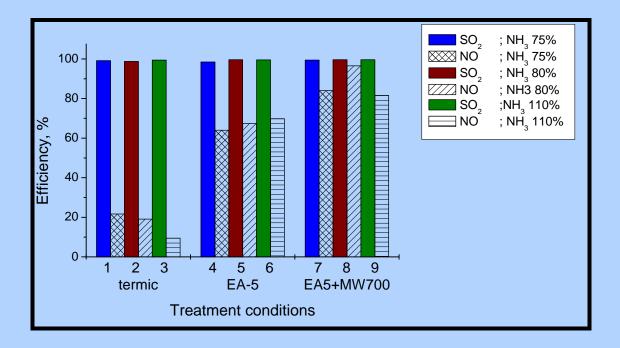

Stage II 15.10.2008


	the laboratory accelerator ALIN-10
Activity II.1: Elaboration of an e ALIN-10	expertimental model for acid gases conversion with the combined treatment EB+MW, for
Elaboration of the combined irradi	iation reactor
Elaboration of the experimental n	nodel for gas analyzing and conditioning
Act. II.2: Design of an expertime	ntal model for acid gases conversion with the combined treatment EB+MW, for ALIN-10
Design of the combined irradiation	n reactor
Design of the experimental mode	l for gas analyzing and conditioning
Act. II.3: Realization of an exper 10	timental model for acid gases conversion with the combined treatment $EB+MW$, for ALIN
Realization of the combined irradi	ation reactor
Realization of the experimental m	odel for gas analyzing and conditioning
Act. II.4: <i>Elaboration, designing separation</i>	and realization of the experimental model for the gases preparation and for the fly ash
Elaboration, designing and realization	tion of the experimental models
	od for EB dose determination for continuously gas flow
Elaboration, of the method	
Act. II.6: Experimentation of the	model for acid gases conversion with the combined treatment EB+MW, for ALIN-10
Experimentation of the combined	irradiation reactor
Experimentation of the model for	gas analyzing and conditioning
Act. II.7: Experimentation of the	model for the gases preparation and for the fly ash separation
Experimentation of the model	
Act. II.8: Experimentation of the	method for the dose determination
Experiments	

No. 2 phase objective was to develop, design, make and experiment a model for the conversion of acid gas by combined electron beam and microwave treatment for laboratory accelerator ALIN-10.

Comparative analysis of the EB and MW interaction mechanisms with substance made in the Phase 1 and 2 led us to conclude that the experimental treatment of the combustion gases with accelerator laboratory model should allow successive irradiation with EB and MW and should contain the following components (shown in figure): - An electron accelerator as a source of accelerate electrons - A reaction enclosure for accelerate electrons which should have an adapted geometry with electrical and geometrical characteristics of EB - A microwave reaction enclosure which should present a geometry adapted to the electromagnetic characteristics of MW - A system of microwave generation and transmission - An experimental model of conditioning and preparation of a synthetic gas composed of air, SO2, NOx and CO2 and specific additives - An experimental model for the separation of flying gray and the reaction products; - An analysis system of the synthetic gas composition before and after irradiation. An example of the results obtained is represented in the chart below.

Photograph of the acid gases irradiation installation with ALIN-10 accelerator

Acid gases treatment results

Total dry gas flow rate 1500 l/h, Ammonia 70-110%; Gas temp. $55 - 70^{\circ}$ C, Input concentration: [SO ₂]=1500-2000				
ppmv; [NO]=200 ppmv, [water]=5,3%				

		NH ₃ %	Doza absorbita KGy
1	Thermal	75	
2	Thermal	80	
3	Thermal	110	
4	EA (Electron beam) 5W	70	6,4
5	EA 5W	76	6,4
6	EA 5W	110	6,4
7	EA 5W + MW (microwave) 700W	65	6,4
8	EA 5W + MW 700W	70	6,4
9	EA 5W + MW 700W	85	6,4